Search results for "Energy Levels"

showing 10 items of 245 documents

Relativistic, model-independent, multichannel $2\to2$ transition amplitudes in a finite volume

2016

We derive formalism for determining $\textbf{2} + \mathcal J \to \textbf{2}$ infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calcu…

PhysicsFinite volume methodBethe–Salpeter equationNuclear Theory010308 nuclear & particles physicsDegenerate energy levelsHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesObservableParity (physics)Lattice QCD01 natural sciencesScattering amplitudeNuclear Theory (nucl-th)High Energy Physics - LatticeQuantum mechanics0103 physical sciences010306 general physicsBosonMathematical physics
researchProduct

Ordinary muon capture studies for the matrix elements in ββ decay

2018

Precise measurement of $\gamma$-rays following ordinary (non-radiative) capture of negative muons by natural Se, Kr, Cd and Sm, as well as isotopically enriched $^{48}$Ti, $^{76}$Se, $^{82}$Kr, $^{106}$Cd and $^{150}$Sm targets was performed by means of HPGe detectors. Energy and time distributions were investigated and total life time of negative muon in different isotopes was deduced. Detailed analysis of $\gamma$-lines intensity allows to extract relative yield of several daughter nuclei and partial rates of ($\mu$,$\nu$) capture to numerous excited levels of the $^{48}$Sc, $^{76}$As, $^{82}$Br, $^{106}$Ag and $^{150}$Tc isotopes which are considered to be virtual states of an intermedia…

PhysicsMuonta114010308 nuclear & particles physicsenergy levels and level densitieschemistry.chemical_elementdouble beta decayGermaniumhiukkasfysiikka01 natural sciencesnuclear structure and decaysMuon captureelectron and muon captureMatrix (mathematics)chemistryExcited state0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsydinfysiikkaNuclear ExperimentEnergy (signal processing)Intensity (heat transfer)Physical Review C
researchProduct

Dimethoxy Aromatic Compounds. VIII. Degenerate Dealkylation-Realkylation Reaction of 1-Bis(2,4-dimethoxyphenyl)-2-methylpropane.

1994

The condensation reaction under acid condition of the benzylic alcohols 1, 2 and 3 with the hexadeutero dimethoxybenzenes 4, 5 and 6 leads to the expected hexadeutero bis(dimethoxyphenyl)-2-methylpropanes 7, 8 and 9, respectively. However, the presence of both dodecadeutero and unlabelled 1-bis(2, 4-dimethoxyphenyl)-2-methylpropanes 10 and 11 indicates that 9 undergoes a rapid degenerate dealkylation-alkylation reaction.

chemistry.chemical_compoundchemistryDrug DiscoveryDegenerate energy levelsOrganic chemistryEtherGeneral ChemistryGeneral MedicineAlkylationCondensation reactionFriedel–Crafts reactionChemical and Pharmaceutical Bulletin
researchProduct

Evidence of oblate-prolate shape coexistence in the strongly-deformed nucleus 119Cs

2021

International audience; Prolate-oblate shape coexistence close to the ground state in the strongly-deformed proton-rich A≈120 nuclei is reported for the first time. One of the four reported bands in 119Cs, built on a 11/2− state at 670 keV, consists of nearly degenerate signature partners, and has properties which unequivocally indicate the strongly-coupled πh11/2[505]11/2− configuration associated with oblate shape. Together with the decoupled πh11/2[541]3/2− band built on the 11/2− prolate state at 110 keV, for which a half-life of T1/2=55(5)μs has been measured, the new bands bring evidence of shape coexistence at low spin in the proton-rich strongly deformed A≈120 nuclei, a phenomenon p…

58Ni(64Zn3p)119CsNuclear reactionNuclear and High Energy PhysicsQC1-999Nuclear TheoryModel calculation-coincidences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMolecular physicsMeasured γγγ-coincidencescesium0103 physical sciencesmedicineNuclear reaction:58Ni(64Zn3p)119CsZnCovariant transformationCs010306 general physicsSpin (physics)Ni(PhysicsLinear polarization010308 nuclear & particles physicsLinear polarizationPhysicsDegenerate energy levels3p)Oblate-prolate coexistenceNuclear reactionmedicine.anatomical_structureNuclear reaction:Angular correlationsDensity functional theoryydinfysiikkaGround stateMeasuredNucleusPhysics Letters B
researchProduct

Structure formation during an early period of matter domination

2014

In this work we show that modifying the thermal history of the Universe by including an early period of matter domination can lead to the formation of astronomical objects. However, the survival of these objects can only be possible if the dominating matter decays to a daughter particle which is not only almost degenerate with the parent particle but also has an open annihilation channel. This requirement translates in an upper bound for the coupling of such a channel and makes the early structure formation viable.

PhysicsAstronomical ObjectsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Structure formation010308 nuclear & particles physicsDegenerate energy levelsFOS: Physical sciencesFísicaAstrophysics16. Peace & justice01 natural sciencesUpper and lower boundsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesParticle010303 astronomy & astrophysicsPeriod (music)Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

The algebra eigenstates method for some systems with spin-like interactions

2006

International audience; An extension of the algebra eigenstates formalism is proposed to solve the eigenvalue equation for a class of problems involving "spin interactions". The method is detailed for the harmonic oscillator, su(2) and su(1, 1) algebras. Special emphasis is given to the resolution of problems in vibronic spectroscopy involving doubly degenerate electronic states.

PhysicsDegenerate energy levelsGeneral Physics and Astronomycoherent statesElectronic statesAlgebraFormalism (philosophy of mathematics)algebraic methods[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]vibronic spectroscopyCoherent statesVibronic spectroscopyalgebra eigenstatesHarmonic oscillatorEigenvalues and eigenvectorsGroup theory
researchProduct

Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data

2008

Abstract We consider a degenerate elliptic–parabolic problem with nonlinear dynamical boundary conditions. Assuming L 1 -data, we prove existence and uniqueness in the framework of renormalized solutions. Particular instances of this problem appear in various phenomena with changes of phase like multiphase Stefan problems and in the weak formulation of the mathematical model of the so-called Hele–Shaw problem. Also, the problem with non-homogeneous Neumann boundary condition is included.

Renormalized solutionsApplied MathematicsDegenerate energy levelsMathematical analysisMixed boundary conditionHele–Shaw problemWeak formulationMultiphase Stefan problemsNonlinear systemNeumann boundary conditionFree boundary problemUniquenessBoundary value problemAnalysisMathematicsDegenerate elliptic–parabolic problemsJournal of Differential Equations
researchProduct

Four-dimensional unsubtraction with massive particles

2016

We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with an scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results pr…

QuarkPhysicsParticle physicsNuclear and High Energy Physics010308 nuclear & particles physicsScalar (mathematics)Degenerate energy levelsFOS: Physical sciencesKinematics01 natural sciencesVector bosonMassless particleTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physics
researchProduct

Isomeric 13/2+ state in 201Fr

2020

We have identified an isomeric state in 201Fr for which we propose a spin and parity of 13/2 +, and interpret it as arising from the π(i13/2 ) configuration. A half-life of 720(40) ns was measured, corresponding to B(M2) = 0.17(2) W.u., in good agreement with those of other 13/2 + → 9/2 − [π(i13/2 ) → π(h9/2 )] transitions observed in other nuclei in the region. The nuclei of interest were produced in a fusion-evaporation reaction and their decay properties were investigated using the GREAT spectrometer at the focal plane of the RITU gas-filled recoil separator. peerReviewed

lifetimes and widthsalpha decayenergy levels and level densitiesnuclear spin and parityisomer decaysydinfysiikkanuclear structure and decays
researchProduct

Degenerate Landau–Zener model in the presence of quantum noise

2019

The degenerate Landau–Zener–Majorana–Stückelberg model consists of two degenerate energy levels whose energies vary with time and in the presence of an interaction which couples the states of the two levels. In the adiabatic limit, it allows for the populations transfer from states of one level to the states of the other level. The presence of an interaction with the environment influences the efficiency of the process. Nevertheless, identification of possible decoherence-free subspaces permits to engineer coupling schemes for which the effects of quantum noise can be made negligible.

PhysicsQuantum PhysicsDecoherence-free subspacesPhysics and Astronomy (miscellaneous)Quantum noiseDegenerate energy levelsFOS: Physical sciencesopen quantum systemsdecoherence-free subspace01 natural sciences010305 fluids & plasmasLandau-Zener processeQuantum mechanics0103 physical sciencesStandard linear solid modelQuantum Physics (quant-ph)010306 general physicsEnergy (signal processing)International Journal of Quantum Information
researchProduct